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Abstract 

 

 

Keywords: 
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In this paper, we propose to continue the steps started in the first two papers with the same generic title and 

symbolically denoted by (I) and (II), namely, the presentation of ways of achieving a systemic vision on a 

certain mathematical notional content, a vision that to motivate and mobilize the activity of those who teach 

in the classroom, thus facilitating both the teaching and the assimilation of notions, concepts, scientific theories 

approached by the educational disciplines that present phenomena and processes from nature. Thus, we will 

continue in the same systemic approach, solving some Diophantine equations of higher degree, more precisely 

some generalizations of the Pythagorean equation and some quadratic Diophantine equations, in the set of 

natural numbers, then of the whole numbers, in order to "submerge" a such an equation in a ring of matrices 

and try to find as many matrix solutions as possible. In this way we will solve 12 large classes of Diophantine 

quadratic or higher order equations. For attentive readers interested in these matters, at the end of the paper we 

will propose 6 open problems. The solution of each of these open problems represents, in fact, a vast research 

activity and that can open the way to solving such more complicated Diophantine and / or matrix equations. 

 

  
Zusammenfasung 

 

 

Schlüsselworte: 
Gleichung; System; Lösung; 
Matrix; Ring.  

 

In dieser Arbeit schlagen wir vor, das fortzusetzen, was wir in den ersten beiden Arbeiten mit demselben 

allgemeinen Titel und symbolisch mit (I) und (II) bezeichnet haben, nämlich die Lösung der diophantischen 

Gleichungen, indem wir sie in den Ring der Matrizen eintauchen (Mn(Z),+,) und das Studium der Lösung 

der entsprechenden Matrixgleichungen. Auf diese Weise werden wir hier 12 große Klassen quadratischer oder 

höherer diophantischer Gleichungen lösen, nachdem wir uns in den ersten beiden Werken mit pythagoreischen 

Gleichungen und bestimmten Verallgemeinerungen davon befasst haben. Nach wie vor sind alle in dieser 

Arbeit vorgestellten diophantischen Gleichungen vollständig gelöst und die Lösbarkeit der entsprechenden 

Matrixgleichungen wird spezifiziert und veranschaulicht. Darüber hinaus werden wir für aufmerksame Leser, 

die sich für diese Themen interessieren, am Ende des Aufsatzes sechs offene Probleme vorschlagen. Die 

Lösung jedes dieser offenen Probleme ist in der Tat eine umfangreiche Forschungsaktivität und könnte den 

Weg für die Lösung solch komplizierterer diophantischer und/oder Matrixgleichungen ebnen. Die Idee besteht 

darin, den Leser für solche Recherchen zu begeistern und zu entwickeln. 

 

1. Introduction  

As I stated above, in this paper we will continue 

the steps started in (Vălcan, 2019) and continued in 

(Vălcan, 2022), namely, the approach in a systemic 

view of the solution of some Diophantine equations 

and the study of the solvability of the corresponding 

matrix equations of immersing the Diophantine 

equations in the ring of matrices. 

 Thus, we will continue, in the same systemic 

approach, solving some Diophantine equations, more 

precisely some generalizations of the Pythagorean 

equation (other than those presented in the first two 

works) and some Diophantine equations of higher 

degree, in the set of natural numbers, then in the set of 

integers. Finally, we will submerge each such equation 

into a matrix ring and try to find as many matrix 

solutions as possible. 

 Therefore, this paper continues the ideas from 

the works (Vălcan, 2019) and (Vălcan, 2022). In this 

sense we will keep and continue not only the solution 

ideas and examples, but also the numbering of the 

results. 

 In this paper, we will first solve the negative 

Pythagorean equation (G) and then move on to some 

higher order equations: (H), (H1), (H2), (I), (J), (K), 

(L), (M), (N), (O), (P), (Q) and (R), which we will 

solve in the set of natural numbers and then of integer 

numbers, after which we will submerge them, on all in 

the ring Mn(Z).  

 And here, in solving Diophantine equations, 

we will use didactic methods, easily accessible to 

pupils and students, different from those presented in 
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(Andreescu & Andrica, 2002) or (Cucurezeanu, 2005), 

but based on ideas from there. 

We also specify that we will use the knowledge 

related to the divisibility relation in the set of integers 

according to the model presented in (Acu, 2010). 

2. Problem Statement 

As is known from school practice, solving 

Diophantine equations often turns out to be quite 

difficult for pupils, students or teachers. The reasons 

are multiple: this topic does not appear explicitly in 

school curricula, but neither do teachers allocate 

special lessons to teach methods for solving these 

types of equations. On the other hand, due to the rather 

large number of types of Diophantine equations, of 

their solving methods, since secondary school, such 

equations appear, in particular, as applications of the 

divisibility relation - see (Vălcan, 2017). 

Unfortunately, the lack of special courses aimed at 

solving Diophantine equations in Mathematics 

faculties also contributes to this unpleasant situation. 

So, it is possible that a graduate of such a faculty, who 

became a teacher, does not know how to solve certain 

types of Diophantine equations and thus will not be 

able to teach students how to solve such equations. It 

is useless to talk about the immersion of such 

equations in different rings. (Vălcan, 2022) 

Therefore, these three papers come to reduce this 

shortcoming both for students and teachers. 

3. Research Questions 

In our research we will try to find answers to the 

following questions: 

Can Pythagoras' equation be generalized in 

another way, as I generalized it in the paper (Vălcan, 

2022)? 

Do the new generalized Pythagorean equations 

have solutions in the set of integers? What about other 

higher order Diophantine equations? 

If we immerse these generalized Pythagorean 

equations in the matrix ring, Mn(Z), do the new matrix 

equations have solutions in this ring? 

4. Purpose of the Study  

Therefore, we will generalize, in other ways than 

those presented in (Vălcan, 2022), the well-known 

Pythagorean equation: 

x2+y2=z2,      

          (A) 

we will solve in the set Z all these generalized 

Pythagorean equations, but also other Diophantine 

equations of higher degree and we will study their 

solvability in a matrix ring. 

5. Research Methods 

We start with the "negative" Pythagorean 

equation: 

x-2+y-2=z-2.             (G) 

Theorem 7.1: Equation (G) is solvable both in the 

set of natural numbers and in the set of integers. 

Proof: The equation is equivalent to: 

x2+y2=

2

z

yx







 
.               (7.1) 

This shows that if (x,y,z) is a solution of equation 

(7.1), then z  (xy) and x2+y2 is a perfect square. Then 

equation (7.1) becomes: 

x2+y2=t2,                                                                          (7.2) 

with tN, and from the equalities (7.1) and (7.2), 

we obtain the equality: 

t=
z

yx 
.                                                                        (7.3) 

We consider,  

d=(x,y,t).                                                                          (7.4) 

Then: 

x=ad, y=bd and t=cd,                           (7.5) 

where a, b, cN, with: 

(a,b,c)=1.                                                                           (7.6) 

From the equalities (7.5), it follows that the 

equation (7.3) reduces to: 

z=
c

dba 
.                                 (7.7) 

Now, from the equalities (7.5) and (7.2), we obtain 

that: 

a2+b2=c2,                                                                            (7.8) 

that is, the numbers a, b, c are two by two prime to 

each other – see the equality (7.6). So, from the 

equality (7.7), it is obtained that c  d, that is:  

d=kc, 
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with kN. Therefore, 

x=kac, y=kbc, t=kc2, and z=kab.             (7.9) 

Now, from the equality (7.8) and Theorem 2.5 

from (Vălcan, 2019), we obtain that: 

a=m2-n2, b=2mn and c=m2+n2,                     (7.10) 

where m, nN and mn. Finally, from the 

equalities (7.9) and (7.10), we obtain that the integer 

solutions of the equation (G) are given by the 

equalities: 

 x=k(m4-n4), y=2kmn(m2+n2) and  

 z=2kmn(m2-n2),              (7.11) 

where k, m, nZ and mn.  

Let us now consider equation (G) in the ring 

(Mn(Z),+,): 

X-2+Y-2=Z-2.                                 (G) 

Theorem 7.2: The equation (G) is not solvable in 

the ring (Mn(Z),+,).  

Proof: We assume that the equation (G) is 

solvable in the ring (Mn(Z),+,). Then, a solution 

(X,Y,Z)Mn(Z)Mn(Z)Mn(Z) of the equation (G) 

consists of invertible matrices. If we note:  

X-1=M, Y-1=N and Z-1=P, 

then the matrix equation (G) becomes: 

M2+N2=P2,                                                                       (A) 

which, according to Theorem 3.1 from (Vălcan, 

2019), is solvable in the ring (Mn(Z),+,), because the 

matrices M, N, PMn(Z) can be solutions of the 

equation (A), if: 

M=A2-B2, N=2AB and P=A2+B2,                      (3.3) 

where A, BMn(Z) and: 

 AB=BA.                               (3.1) 

In this case: 

 X=(A2-B2)-1, Y=(2AB)-1 and 

 Z=(A2+B2)-1.                        (3.3) 

But, since A, BMn(Z), it is possible that X or Z 

no longer belongs to the set Mn(Z). More than that, 

because: 

 det(2AB)=2ndet(AB),   

 and (2AB)=2n-1(AB), 

it follows that: 

 (2AB)-1=
2

1
(AB)-1Mn(Z). 

In conclusion, it follows that this equation is not 

solvable in the ring (Mn(Z),+,).  

 We now pass to another equation: 

Theorem 7.3: The equation: 

x4+y4=z2.                        (H) 

it is not solvable in the set of non-zero integers. 

Proof: It suffices to consider x, y, zN. We 

assume, by absurdity, that the equation (H) is solvable 

in non-zero natural numbers and we consider (x1,y1,z1) 

a solution, with minimal z1. We can suppose that:  

(x1,y1,z1)=1                              (7.12) 

and taking into account that (x 2

1 ,y 2

1 ,z1) is a 

primitive Pythagorean triplet, it follows that:  

(x1,y1)=(y1,z1)=(z1,x1)=1            (7.13) 

and that x1 and y1 have different parities. To make 

a choice, assume that x1 is odd and y1 is even. In this 

case, z1 is odd. Then, it follows that:  

(z1-x
2

1 ,z1+x 2

1 )=2.                              (7.14) 

Indeed, if:  

(z1-x
2

1 ,z1+x 2

1 )=d, 

then d  (z1-x
2

1 ) and d  (z1+x 2

1 ). It follows that d  

(2z1) and d  (2x 2

1 ). From the last equality from (7.13) 

and from the fact that z1 is odd, we obtain that:  

d=2.                                                                            (7.15) 



Teodor Dumitru Vălcan Educatia 21 Journal, 25 (2023) Art. 18,  Page | 171   

  

 

Because:  

y 4

1 =(z1-x
2

1 )(z1+x 2

1 ),                             (7.16) 

from equality (7.14), it follows that one of the 

numbers z1-x
2

1  and z1+x 2

1  is divisible by 2, but not 

divisible by 4, so the second should be divisible by 8. 

Therefore:  

y1=2ab                                                                           (7.17) 

and one of the following situations is verified: 

z1-x
2

1 =2a4, z1+x 2

1 =8b4 or else z1-x
2

1 =8b4, 

 z1+x 2

1 =2a4,            (7.18) 

where, in each case, a is odd and:  

(a,b)=1.                               (7.19) 

The first two equalities in (7.18) cannot hold, 

since they would imply:  

x 2

1 =-a4+4b4,                                         (7.20) 

which leads to the contradiction:  

a4=M4+3,     that is   

 1-1 (mod 4).  

Therefore, we have the second alternative, that is:  

 z1=a4+4b4,                                         (7.21) 

with 0az1 and, according to equality (7.21) and 

the last equality from (7.18), we obtain: 

 4b4=z1-a
4=(a2-x1)(a

2+x1).                      (7.22) 

From the equality (7.19) and the last two equalities 

from (7.18), it follows that:  

(a,x1)=1                                                                         (7.23) 

and, we immediately obtain that:  

(a2-x1,a
2+x1)=2.                                (7.24) 

Consequently, from the equalities (7.22), we 

obtain that: 

a2-x1=2x 4

2  and a2+x1=2y 4

2 ,                            (7.24) 

where: 

x2y2=b.  

With the notation:  

a=z2, 

from the equalities (7.24), we obtain that: 

x 4

2 +y 4

2 = z 2

2 , 

with 0z2z1, which contradicts the minimality of 

z1. 

Otherwise: We will prove the Theorem using the 

waterfall method (see, Cucurezeanu, 2005, p. 119). 

We can assume here also that the equalities (7.13) hold 

and x is odd and y is even. The equation being 

Pythagorean, from Theorem 2.5 from (Vălcan, 2019), 

it follows that there are a and bZ, such that: 

x2=a2-b2, y2=2ab and z=a2+b2,                      (7.25) 

with ab0, a – odd and b – even, but with: 

 (a,b)=1.                              (7.26) 

Because, from the first equality from (7.25), it 

follows that: 

 x2+b2=a2, 

and from the same Theorem 2.5 from (Vălcan, 

2019), we deduce that:  

x=p2-q2, b=2pq and a=p2+q2,                      (7.27) 

with p, qZ. From the second equality in (7.25) 

and the last two equalities in (7.27), it follows that: 

 y2=4pq(p2+q2),                                          (7.28) 

and:  

 (p,q)=1.                              (7.29) 

Now, from the equality (7.28), it follows that: 

p=x 2

1 , q=y 2

1 , p2+q2=z 2

1  and (x1,y1)=1.   (7.30) 

From the first two equalities from (7.30) and the 

last equality from (7.27), we obtain (for a=z1) that:  

 x 4

1 +y 4

1 =z 2

1 .        (7.31) 

So, to a solution (x,y,z) of the equation, with non-

zero components, there corresponds another solution 

(x1,y1,z1) also with non-zero components and vice 

versa. Moreover, in the new solution, according to the 
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third equality from (7.30) and the last equalities from 

(7.27) and (7.25), we have: 

 z1
4 z .                   (7.32) 

This resolution process can be repeated an infinite 

number of times, until we obtain a decreasing string of 

natural numbers z, z1, z2, ... . So there exists an nN 

such that: 

 zn=1, 

in which case xnyn=0, which contradicts the 

hypothesis.  

Since the triplets of integer numbers, of the form 

(0,k,k2) or (k,0,k2) are solutions of equation (H), it 

follows that we have the following remark:    

Remark 7.3: Geometric interpretation: on the 

surface of the equation: 

 z2=x4+y4, 

there are no integer coordinate points other than 

those located in the planes:  

x=0 or y=0.  

Regarding the matrix equation: 

X4+Y4=Z2,            (H) 

we have the following result: 

Theorem 7.3: The equation (H) has no solutions 

(with non-zero components) in the ring (Mn(Z),+,).  

Proof: Indeed, if this equation were solvable, then 

there would be matrices X, Y, ZMn(Z) such that: 

 X4+Y4=Z2. 

Therefore, (X2,Y2,Z) is a triplet of Pythagorean 

matrices. Then, according to Theorem 3.1 from 

(Vălcan, 2019), there are matrices A, BMn(Z), such 

that: 

 X2=A2-B2, Y2=2AB and Z=A2+B2; 

but, the second equality is impossible. Of course, 

the triplets of matrices with integer coefficients, of the 

form (0,Y,Y2) or (X,0,X2) are solutions of the equation 

(H).    

From Theorem 7.2 it follows immediately: 

Corollary 7.4: The equation:  

x4+y4=z4,               (I) 

is not solvable in the set of nonzero integers; 

therefore, the only solutions of equation (I) are of the 

form (k,0,k) and (0,k,k), respectively, with kZ.  

 From Theorem 7.3, it follows: 

Corollary 7.5: The matrix equation: 

 X4+Y4=Z4,             (I) 

is not solvable in the ring of matrices (Mn(Z),+,) 

so, the only solutions of the equation (I) are of the 

form (X,0,X) and (0,Y,Y), respectively, with X , 

YMn(Z).  

Corollary 7.5: The only solutions of the equation: 

 x4+6x2y2+y4=2z2,                                        (J) 

are given by the equalities: 

 x2=y2=k2. 

Proof: Indeed, if we replace in equation (J), x by 

u+v and y by u-v, we obtain the equation: 

 4u4+4v4=z2,                              (7.33) 

whence it follows that z is even. Let be:  

z=2t.                                                                     (7.34) 

Then equation (J) becomes: 

 u4+v4=t2,                              (7.35) 

what is an equation of the type (H). From Remark 

7.3 it follows that the only solutions of equation (7.35) 

are obtained for: 

u=0 or v=0. 

So,  

(u,v,t)(0,k,k2),(k,0,k2)  kZ.  

Following a proof path like that of the previous 

corollary, we obtain: 
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Corollary 7.5: The only solutions of the matrix 

equation: 

 X4+6X2Y2+Y4=2Z2,                                     (J) 

in the ring of matrices (Mn(Z),+,), are of the form 

(X,X,2X2), with XMn(Z).  

 Two remarks are required here:  

Remarks 7.6: 1) Equation (I) is a special case of 

Fermat's equation:  

xn+yn=zn,                                                                       (H1) 

where n2 is a natural number and x, y, z are 

natural numbers. 

2) Euler conjectured that the equation:  

xn+yn+zn=tn                                    (H2) 

has no nonzero positive integer solutions, if n4. 

Noam Elkies (1988) gave the following 

counterexample:  

26824404+153656394+187967604=206156734. 

At the same time, Roger Frye (1988) found the 

smallest solution for the above equation, 

958004+2175194+4145604=4224814. 

Theorem 7.7: The matrix equation: 

X4+Y4+Z4=T4                               (H ,

2 ) 

has solutions in the ring (Mn(Z),+,). 

Proof: Of course, by Corollary 7.5, for any 

matrices, X, Y, Z, T(Mn(Z),+,), none of the 

quadruples (X,Y,0,T), (X,0,Z,T), respectively 

(0,Y,Z,T), are not solutions of the equation (H ,

2 ). On 

the other hand, any quadruple of the form (X,0,0,X), 

or (0,X,0,X), or (0,0,X,X), is a solution of the equation 

(H ,

2 ), if X(Mn(Z),+,). Now, we will look for other 

solutions of the equation (H ,

2 ), different from the ones 

above. Let (x,y,z,t) be a quadruple of integers, solution 

of the equation (H2) and consider the matrices: 

 X= 








xx

0x
,   Y= 









yy

0y
,  

 Z= 








zz

0z
,   and T= 









tt

0t
. 

Then, 

 X4= 













 44

4

xx4

0x
,  Y4= 














 44

4

yy4

0y
, 

 Z4= 













 44

4

zz4

0z
,  and T4= 














 44

4

tt4

0t
. 

So, according to the hypothesis, 

 X4+Y4+Z4= 
















444444

444

zyx)zyx(4

0zyx

= 













 44

4

tt4

0t
. 

 Next, we present the following result: 

Theorem 7.7: The equation:  

x4-y4=z2,                        (K) 

is not solvable in nonzero integers. 

Proof: We can assume that x, y, zN and 

consider a solution (x,y,z), with:  

(x,y)=1                                                                      (7.36) 

and x minimal. Then the equation can still be 

written: 

 x4=y4+z2,                                   (K1) 

and (y2,z,x2) becomes a primitive Pythagorean 

triplet, so we have the following cases: 

Case 1: According to Theorem 2.5 from (Vălcan, 

2019), we have: 

y2=a2-b2, z=2ab and x2=a2+b2,      (7.37) 

where ab0 and:  

(a,b)=1.                                                                    (7.38) 

From the equalities (7.37), it follows that: 

a4-b4=(xy)2                                                                                                                             

(7.39) 
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and ax, in contradiction with the minimality of x. 

Case 2: According to the same Theorem 2.5 from 

(Vălcan, 2019), we have: 

 y2=2ab  z=a2-b2  

 and  x2=a2+b2,                                 (7.40) 

where ab and:  

(a.b)=1.                                                                          (7.41) 

Since (a,b,x) is also a primitive Pythagorean triplet 

(according to the last equality in (7.40)), we can 

assume that a is even and b is odd. Then, from the first 

equality in (7.40) and the equality (7.41), it follows 

that:  

a=2p2 and b=q2.        (7.42) 

Then, from the last equality in (7.40), it follows 

that: 

x2=4p4+q4  and y=2pq.       (7.43) 

Therefore (2p2,q2,x) is also a primitive triplet, so 

also Theorem 2.5 from (Vălcan, 2019) implies:  

 p2=rs, q2=r2-s2  and x=r2+s2,       (7.44) 

where r, sN, with the property that rs and:  

(r,s)=1.                                                                    (7.45) 

Finally, from the first equality from (7.44) we 

obtain that: 

 r=u2 and s=v2,        (7.46) 

where u, vN, with:  

(u,v)=1.                                                                         (7.47) 

So, from the equalities (7.46) and the second 

equality from (7.44), it follows that: 

u4-v4=q2                                                                       (K2) 

and, from the first equality in (7.46), the first 

equality in (7.44), the first equality in (7.42) and the 

first equality in (7.40), we obtain that: 

u= r p2p2x,  

which contradicts the minimality of x.  

 The following remarks are required here: 

Remark 7.8: Equation (K) has solutions for:  

x2=z=k2 and y=0.  

or for:  

x=y=k and  z=0.         (7.48) 

Reamrk 7.9: For any matrix XMn(Z), the 

triplets of the form: 

 (X,0,X2) and (X,X,0), 

are solutions in the ring (Mn(Z),+,), of the matrix 

equation: 

 X4-Y4=Z2.           (K) 

 In the following, we will try to answer the 

question: 

 There exists a triplet of matrices 

(X,Y,Z)Mn(Z)Mn(Z)Mn(Z), with (X0)  

(Y0)  (Z0), such that solution of the equation (K)? 

 In this sense we have the following result: 

Theorem 7.10: If the equation (B) from (Vălcan, 

2022) admits a solution (C,D,F,E), with:  

CD=EF and C2+D2+F2=E2.      (7.49) 

then the triplet (X,Y,Z)Mn(Z)Mn(Z)Mn(Z), 

with: 

 X=E2+F2,   Y=C2-D2 

 and Z=4CD(C2+D2)=4EF(E2-F2),

 (7.50) 

is the solution of the equation (K). 

Proof: If (X,Y,Z)Mn(Z)Mn(Z)Mn(Z), is a 

solution of the equation (K), then (Y2,Z,X2) is a 

Pythagorean triplet and, according to Theorem 3.1 

from (Vălcan, 2019), 

Y2=A2-B2, Z=2AB and X2=A2+B2,      (7.51) 

with A, BMn(Z). We deduce from this that: 

(Y,B,A) and (A,B,X) are Pythagorean triplets. So, 



Teodor Dumitru Vălcan Educatia 21 Journal, 25 (2023) Art. 18,  Page | 175   

  

 

according to the same Theorem 3.1 from (Vălcan, 

2019), we have:  

 Y=C2-D2, B=2CD and A=C2+D2,             (7.52) 

and: 

  A=E2-F2, B=2EF and X=E2+F2,     (7.53) 

with C, D, E, FMn(Z). From the equalities (7.52) 

and (7.53), it follows that the equalities (7.49) hold. 

On the other hand, from the equalities (7.51) and 

(7.52), it follows that: 

 X4=C8+38C4D4+12C6D2+12C2D6+D8, 

 Y4=C8+6C4D4-4C6D2-4C2D6+D8, 

 Z2=32C4D4+16C6D2+16C2D6. 

It is immediately verified that the equality (K) 

holds. Then, from the equalities (7.51) and (7.53), it 

follows that: 

 X4=E8+6E4F4+4E6F2+4E2F6+F8, 

 Y4=E8+38E4F4-12E6F2-12E2F6+F8, 

 Z2=-32E4F4+16E6F2+16E2F6. 

Again, it is immediately verified that the equality 

(K) holds.   

 From Theorem 7.7 we obtain:  

Corollary 7.9: The only solutions of the equation: 

 x4+y4=2z2,             (L) 

are given by the equalities: 

 x2=y2=k2.          (7.49) 

Proof: Indeed, since x and y are odd, from 

equation (L), we obtain the equation: 

 z4-(xy)4=

2
44

2

yx







 
, 

which is an equation of the form (K). So, according 

to the first equalities from (7.48), the only solutions of 

the equation (L) are the triplets of the form (k,k,k2), 

with kZ.  

Corollary 7.10: The only solutions of the equation: 

 x4+6x2y2+y4=z2,                                            (M) 

are given by the triplets (0,k,k2) and (k,0,k2), with 

kZ.  

Proof: Indeed, if we replace in equation (L) above, 

x by x+y and y by x-y, we obtain the equation (M). 

Otherwise: Multiplying equation (M) by 16, we 

obtain: 

 (2x)4+6(2x)2(2y)2+(2y)4=(4z)2,         (M1) 

and if we replace in the equation (M1) above, 2x 

with u+v and 2y with u-v, we obtain the equation: 

 u4+v4=2z2,   

which is an equation of type (L). Now, Corollary 

7.9 completes the proof.  

Corollary 7.11: The only solutions of the equation: 

 x4-6x2y2+y4=z2,           (N) 

are given by the triplets (0,k,k2) and (k,0,k2), with 

kZ.  

Proof: Indeed, we can assume that:  

(x,y)=1                                                                          (7.50) 

and rewrite equation (N) as follows: 

 (x2-y2)2-4x2y2=z2,        (7.51) 

so: 

 (x2-y2-z)(x2-y2+z)=(2xy)2.      (7.52) 

Since, x and y have different parities and z is odd:  

 (x2-y2-z,x2-y2+z)=2         (7.53) 

and, from the equality (7.52), it follows that: 

 x2-y2-z=2a2 and x2-y2+z=2b2,     (7.54) 

with a, bZ and  

xy=ab.                                                                    (7.55) 

Then, from the equalities (7.54), we obtain that: 

 x2-y2=a2+b2 and a4+6a2b2+b4=(x2+y2)2.  

Now we continue as in Corollary 7.10.     

Corollary 7.12: The only solutions of the equation: 

 x4+14x2y2+y4=z2           (O) 
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are given by the triplets: (0,k,k2) and (k,0,k2).  

Proof: Indeed, multiplying the equation by 16 we 

obtain that: 

(2x)4+14(2x)2(2y)2+(2y)4=(4z)2,     (7.56) 

and if we replace in equation (7.56) above, 2x with 

u+v and 2y with u-v, we obtain the equation: 

 u4-u2v2+v4=z2             (P) 

from which, according to Theorem 2.3.3 from 

(Andreescu & Andrica, 2002, p. 83), it follows that: 

 (u,v,z)(k,k,k2), (k,0,k2). 

Therefore,  

(x,y,z)=(2k,0,k2) or (x,y,z)=(k,k,4k2). 

Corollary 7.13: The only solutions of the equation: 

3x4+10x2y2+3y4=z2            (Q) 

are given by the triplets: (k,k,4k2).  

Proof: Indeed, we write the equation like this: 

 (3x2+y2)(x2+3y2)=z2          (Q1) 

and because: 

(3x2+y2,x2+3y2)=1 

it follows that: 

 3x2+y2=4s2 and 3y2+x2=4t2.     (7.57) 

Finally, we obtain that:  

 (x,y,z)=(k,k,4k2). 

Otherwise: We replace x with u+v, y with u-v and 

z with 4t, we obtain the equation: 

 u4+u2v2+v4=t2,             (R) 

from where, according to Theorem 2.3.2 from 

(Andreescu & Andrica, 2002, p. 81), it follows that: 

 (u,v,t)=(k,0,k2). 

Therefore,  

(x,y,z)=(k,k,4k2). 

At the end of this paper, we present the following 

results, which result from those shown above: 

Corollary 7.14: If XMn(Z), then the following 

statements hold: 

1) The triplet (X,X,X2) is a solution of the 

equation: 

X4+Y4=Z2.             (L) 

2) The triplets (0,X,X2) and (X,0,X2) are solutions 

of the equation: 

X4+6X2Y2+Y4=Z2.          (M) 

3) The triplets (0,X,X2) and (X,0,X2) are solutions 

of the equation: 

X4-6X2Y2+Y4=Z2.           (N) 

4) The triplets (0,X,X2) and (X,0,X2) are solutions 

of the equation: 

X4+14X2Y2+Y4=Z2.          (O) 

5) The triplets (X,X,X2), (0,X,X2) and (X,0,X2) are 

solutions of the equation: 

X4-X2Y2+Y4=Z2.            (P) 

6) The triplet (X,X,4X2) is a solution of the 

equation: 

3X4+10X2Y2+3Y4=Z2.          (Q) 

 Open problem: 

Equations (L), (M), (N), (O), (P) and (Q), 

above, have other solutions in the ring (Mn(Z),+,), 

different from those presented in points 1) – 6) of 

Corollary 7.14? 

6. Findings 

Therefore, not only equations of the form (A), (B), 

(C), (D), (E), and (F) can be transposed into the ring 

(Mn(Z),+,), but also equations of the form (G), (H) , 

(I), (J), (K), (L), (M), (N), (O), (P), (Q) or (R), have 

this property. Only, if the first 6 types of equations 

have solutions in this ring (Mn(Z),+,), not all 10 types 

of equations in the second category are solvable in the 

ring (Mn(Z),+,); some have solutions with nonzero 

components (for example: (J), (H ,

2 ), (K), (L), (P), 

(Q) and (R)), others have solutions with components 

null (for example: (H), (I), (N) and (O)), and others 

are not solvable (for example: (G)).  
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And in these cases of sovability, each of the 

solutions determined in Paragraph 5 induces a solution 

(X(n),Y(n),Z(n))Mn(Z)Mn(Z)Mn(Z), according to 

the model presented in Paragraph 4 of the paper 

(Vălcan, 2019). 

7. Conclusions 

As a general conclusion, we can say that any 

equation of the form (G), (H), (I), (J), (K), (L), (M), 

(N), (O), ( P), (Q) or (R) can be "immersed" in a matrix 

ring of the type (Mn(Z),+,), with nN, any number, 

at least equal to 2; only, not all these equations can be 

solved in the ring of integers (Z,+,), i.e. not all of them 

have integer solutions. 

The same can be said about the corresponding 

"submerged " equation, i.e. in this matrix ring it is 

usually quite difficult to determine all solutions and 

then only certain particular solutions are determined. 

What's more, sometimes there are no such solutions. 

Precisely because of this fact, I proposed, to the 

attentive reader interested in these matters, an open 

problem. Of course solving it creates a much more 

complete image of solving these equations in the ring 

(Mn(Z),+,). 

Of course, this work is also one of the Didactics of 

Mathematics and is also addressed to pupils, students 

or teachers attentive and interested in these problems, 

which we believe we have formed, in this way, a good 

image about solving these types of equations. 
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